ASSOCIATES LLC

Agency Update: Status and Upcoming Competition for DOE Energy Frontier Research Centers

Lewis-Burke Associates LLC – July 2019

This update provides advance intelligence on the next Department of Energy (DOE) Energy Frontier Research Centers (EFRC) competition planned in Fall 2019 and an analysis of the last EFRC competition in fiscal year (FY) 2018.

EFRCs are multi-investigator, multi-disciplinary centers that support fundamental research aimed at overcoming barriers to the development of new energy technologies and accelerating use-driven research to address energy needs. The topics outlined in each EFRC solicitation are guided by reports generated as part of a series of Basic Research Needs (BRN) workshops hosted by DOE. Each report identifies Priority Research Directions (PRDs) for a specific topic in energy sciences.

In addition to the BRN PRDs, EFRCs must address one of the five "grand challenges" identified in the 2007 Basic Energy Sciences Advisory Committee (BESAC) report entitled *Directing Matter and Energy: Five Challenges for Science and the Imagination* as well as the "transformative opportunities" outlined in the 2015 BESAC report entitled *Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science*.

Upcoming EFRC Competition

In Fall 2019, DOE plans to release a \$40 million funding opportunity announcement to compete EFRCs. DOE would like to compete EFRCs ever two years instead of every four years to bring in fresh ideas and be more responsive to breakthroughs in science and instrumentation and changing energy priorities. Of the \$40 million, \$10 million will be focused on science topics relevant to DOE's environmental management mission and the four existing centers will be up for recompetition. The remaining \$30 million will fund between six and 15 new EFRCs in three priority research areas:

- **Quantum information science**: The current EFRCs are focused on quantum materials and DOE would like to fund new centers that have an expanded scope in materials research and chemistry to address a broader set of issues in quantum information science.
- **Microelectronics**: This is a new topic area focused on advanced materials and chemistry to develop next generations microelectronics technologies for applications relevant to DOE's mission, including computing, power grid management, and science facility workloads. The BRN workshop on microelectronics took place after the last EFRC funding call.
- The energy-water nexus: The water security grand challenge is a top priority for Secretary of Energy Rick Perry and this research area helps advance fundamental knowledge in a broad set of DOE mission areas.¹

¹ Links to all the relevant BRN reports can be found in the Sources and Additional Information section at the end of the document.

DOE is currently evaluating research gaps in its EFRC portfolio and may include a few other topics in the final funding call, but it will be more narrowly focused that the 2018 funding opportunity.

Funding for new EFRCs is contingent on congressional appropriations. In its FY 2020 budget request, DOE proposed \$40 million to fund new EFRCs. However, the FY 2020 House Energy and Water bill, which funds DOE, provided only \$30 million of the \$40 million requested by DOE. The Senate has not yet advanced any appropriations bills.

This will remain one of DOE's most competitive programs. The success rate in the last competition was only 17 percent. In FY 2018, DOE received about 250 pre-proposals, of which 100 were encouraged to submit full proposals. Of the full proposals, 42 were selected for awards.

Current EFRCs and Analysis of FY 2018 Competition

DOE currently supports 46 EFRCs. Of these, 42 support a broad range of energy-relevant topics and four are dedicated to DOE's environmental management mission. The graphic below shows the locations of participating EFRC institutions. Total funding for the 42 centers will be \$100 million a year funded through the Office of Science Basic Energy Sciences program. DOE provides an addition \$10 million a year to fund four other EFRCs focused on environmental management that are up for recompetition in 2020 and currently managed by Florida State, Ohio State, the University of South Carolina, and Pacific Northwest National Laboratory.

ASSOCIATES LLC

The last EFRC competition was in FY 2018. On June 29, 2018, DOE announced awards for 42 EFRCs. The awards included 22 new centers and renewals for nine existing centers. These four-year centers will receive on average approximately \$2 million to \$4 million per year through 2022. For the first time, DOE also awarded two-year extensions to another 11 existing centers which will receive on average about \$2 million over the two years to complete research activities through 2020. The twelve other existing centers either did not seek renewal or were terminated. The graphic below shows the distribution of awards.

Of the 42 centers, 30, or 71 percent, were awarded to universities and the remaining 12, or 29 percent, to DOE national labs (see the graphic). This is consistent with prior years and a recognition that universities offer innovative approaches to energy technologies. Similarly, of the 11 existing centers with two-year extensions, eight, or 73 percent, were awarded to universities and the remaining three to DOE national laboratories. Two institutions were awarded two EFRCs—Stanford University and SUNY Stony Brook.

ASSOCIATES LLC

The centers cover a broad range of energy-relevant topics, such as solar energy, nuclear energy, energy storage, catalysis, subsurface science, and quantum materials (see graphic below). All the new centers were awarded in the six priority category research areas identified in the Basic Research Needs workshops and reports released before the funding opportunity: synthesis (e.g., Stony Brooks new Next Generation Synthesis Center), quantum (e.g., UC-San Diego's new Quantum Materials for Energy Efficient Neuromorphic Computing center), next-generation energy storage, (e.g., Case Western Reserve University's Breakthrough Electrolytes for Energy Storage center), catalysis (e.g., Cornell University' Center for Alkaline-Based Energy Solutions center), future nuclear energy technologies (e.g., Los Alamos National Laboratory's Fundamental Understanding of Transport Under Reactor Extremes center), and the energy-water nexus (e.g., Argonne National Laboratory's Advanced Materials for Energy-Water Systems center).

Source: DOE Office of Science.

ASSOCIATES LLC

The table below provides information on each of the 46 existing EFRCs.

Key:

White	New centers
Light Grey	Renewed Centers
Dark Grey	Extended only two years

Center	Lead	Partners	Mission	States	Class
	Institution			Represented	
Quantum Materials					
Center for Novel	Lawrence	Argonne National	To expand	3	2018-
<u>Pathways to</u>	Berkeley	Laboratory,	dramatically our		2022
<u>Quantum</u>	National	Columbia	understanding and		
Coherence in	Laboratory	University,	control of		
Materials (NPQC)		Lawrence Berkeley	coherence in solids		
		National	by building on		
		Laboratory,	recent discoveries		
		University of	in quantum		
		California, Santa	materials along with		
		Barbara	advances in		
			experimental and		
			computational		
			techniques.		
Programmable	Columbia	Carnegie Mellon	To discover,	2	2018-
Quantum Materials	University	University,	characterize, and		2022
<u>(Pro-QM)</u>		Columbia	deploy new forms		
		University,	of quantum matter		
		University of	controllable by		
		Washington	gating, magnetic		
			proximity and nano-		
			mechanical		
			manipulation.		
Center for the	Ames	Ames Laboratory,	To understand and	5	2018-
Advancement of	Laboratory	Argonne National	discover new		2022
Topological		Laboratory, Harvard	quantum		
Semimetals (CATS)		University, Los	phenomena and		
		Alamos National	functionality in		
		Laboratory,	topological		
		Massachusetts	materials for future		
		Institute of	applications in spin-		
		Technology,	based electronics,		
		University of	computing, and		
		California, Santa	sensing.		

		Barbara, University			
Institute for	Johns Hopkins	Cornell University,	To realize,	4	2018-
Quantum Matter	University		understand, and		2022
		Pennsylvania State	revolutionary		
		l Iniversity	quantum materials		
		Princeton	and structures		
		University, Rutgers	where quantum		
		University	effects such as		
		,	entanglement and		
			coherence find		
			collective		
			macroscopic		
			manifestations.		
Center for	University of	California Institute	To provide the	3	2018-
Molecular Magnetic	Florida	of Technology,	materials physics		2022
Quantum Materials		Florida State	and chemistry		
<u>(M2QM)</u>		University, Los	understanding of		
		Alamos National	molecular magnetic		
		Laboratory,	quantum materials		
		University of	essential for		
		Central Florida,	quantum and		
		University of Fiorida	conventional		
			Moore's Law		
Quantum Materials	University of	Argonne National	To lay down the	5	2018-
for Energy Efficient	California. San	Laboratory.	quantum-materials-	5	2022
Neuromorphic	Diego	Brookhaven	based foundation		
Computing (Q-	0	National	for the		
MEEN-C)		Laboratory,	development of an		
		National Center for	energy-efficient,		
		Scientific Research,	fault-tolerant		
		National Institute of	computer that is		
		Standards and	inspired and works		
		Technology, New	like the brain		
		York University,	("neuromorphic").		
		Northwestern			
		University, Purdue			
		University,			
		California Davis			
		Liniversity of			
		California, San			
		Diego, University of			
		California, Santa			

		Barbara, University			
		of Chicago			
Energy Storage					
Center for Alkaline-	Cornell	Binghamton	To achieve a	6	2018-
Based Energy	University	University, Carnegie	detailed		2022
Solutions (CABES)		Mellon University,	understanding of		
		Cornell University,	the nature,		
		Los Alamos National	structure, and		
		Laboratory,	dynamics of		
		National Renewable	electrocatalysis in		
		Energy Laboratory,	alkaline media.		
		Pennsylvania State			
		University,			
		University of			
		Wisconsin, Yale			
		University			
Breakthrough	Case Western	Brookhaven	To develop	5	2018-
Electrolytes for	Reserve	National	fundamental		2022
Energy Storage	University	Laboratory, Case	understanding of: (i)		
<u>(BEES)</u>		Western Reserve	solvation and		
		University,	transport		
		Columbia	properties; (ii)		
		University, CUNY	electrode-		
		Hunter College,	electrolyte		
		New York	interfaces; and (iii)		
		University,	electron transfer		
		University of Notre	reactions in deep		
		Dame, University of	eutectic solvents		
		Tennessee,	and soft		
		University of Texas	nanoparticle		
		at Austin	electrolytes.		
Fluid Interface	Oak Ridge	Ames Laboratory,	To achieve	8	2009-
Reactions,	National	Argonne National	fundamental		2022
Structures and	Laboratory	Laboratory, Drexel	understanding and		
Transport Center		University, North	validated, predictive		
<u>(FIRST)</u>		Carolina State	models of the		
		University, Oak	atomistic origins of		
		Ridge National	electrolyte and		
		Laboratory,	coupled electron		
		Pennsylvania State	transport under		
		University, Tulane	nanoconfinement		
		University,	that will enable		
		University of	transformative		
		California, Riverside,	advances in		
		University of	capacitive electrical		
		Tennessee,	energy storage and		

		and contact scored and scored active sector with	Sz. (Alexandra) (Jennensten)		
		Vanderbilt	other energy-		
		University	relevant interfacial		
			systems.		
Center for	Stony Brook	Brookhaven	To build the	6	2014-
Mesoscale	University	National	scientific knowledge		2022
Transport Properties		Laboratory,	to enable creation		
<u>(m2mt)</u>		Columbia	of scalable		
		University, Cornell	electrochemical		
		University, Drexel	energy storage		
		University, Georgia	systems with high		
		Institute of	energy, power, and		
		Technology,	long life, through		
		Lawrence Berkeley	fundamental		
		National	understanding of		
		Laboratory, Stony	transport properties		
		Brook University,	gained by		
		University of Texas	identification and		
		at Austin	purposeful probing		
			of materials and		
			interfaces under		
			dynamic conditions		
			from the molecular		
			to the mesoscale.		
Center for Synthetic	University of	California Institute	To design materials,	1	2018-
Control Across	California, Los	of Technology, SLAC	interfaces, and		2022
Length-scales for	Angeles	National	architectures that		
<u>Advancing</u>		Accelerator	revolutionize the		
Rechargeables		Laboratory,	performance of		
<u>(SCALAR)</u>		University of	energy storage		
		California, Los	systems by		
		Angeles, University	dramatically		
		of California, San	expanding the		
		Diego, University of	range of materials		
		California, Santa	systems and		
		Barbara, University	chemistries that can		
		of Southern	be employed in		
		California	next generation		
			batteries.		
NorthEast Center	Binghamton	Binghamton	To develop an	4	2009-
for Chemical Energy	University	University,	understanding of		2020
Storage (NECCES)		Cambridge	how key electrode		
		University,	reactions occur, and		
		Massachusetts	now they can be		
		Institute of	controlled to		
		T I I I			
		Technology, Rutgers	improve		

			0 200		
Precision Ion- electron Control in Solid State Storage (PICS3)	University of Maryland	Brook University, University of California, San Diego, University of California, Santa Barbara, University of Michigan Michigan State University, Sandia National Laboratories, University of California, Los Angeles, University of Maryland, University of Utah	performance, from the atomistic level to the macroscopic level through the life-time of the operating battery. To reveal scientific insights and design principles that enable a next- generation electrical energy storage technology based on dense mesoscale architectures of multifunctional solid-state nanostructures.	5	2009- 2020
<u>Center for</u> <u>Electrochemical</u> <u>Energy Science</u> <u>(CEES)</u>	Argonne National Laboratory	Argonne National Laboratory, Northwestern University, Purdue University, University of Illinois Urbana-Champaign	lo create a robust fundamental understanding of the phenomena that control the reactivity of electrified oxide interfaces, films and materials relevant to lithium-ion battery chemistries.	2	2009- 2020
Nuclear					
<u>Fundamental</u> <u>Understanding of</u> <u>Transport Under</u> <u>Reactor Extremes</u> <u>(FUTURE)</u>	Los Alamos National Laboratory	Bowling Green State University, Los Alamos National Laboratory, North Carolina State University, Pacific Northwest National Laboratory, University of California, Berkeley, University of Virginia, University of Wisconsin	To understand how the coupled extremes of irradiation and corrosion work in synergy to modify the evolution of materials by coupling experiments and modeling that target fundamental mechanisms.	7	2018- 2022

	11 0 1	00011112	O LLC		
<u>Center for Thermal</u> <u>Energy Transport</u> <u>under Irradiation</u> <u>(TETI)</u>	Idaho National Laboratory	Air Force Research Laboratory, Columbia University, Idaho National Laboratory, Oak Ridge National Laboratory, Ohio State University, Purdue University, University of Central Florida	To provide the foundational work necessary to accurately model and ultimately control electron- and phonon- mediated thermal transport in 5f- electron materials in extreme irradiation environments.	6	2018- 2022
<u>Molten Salts in</u> <u>Extreme</u> <u>Environments</u> (MSEE)	Brookhaven National Laboratory	Brookhaven National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, Stony Brook University, University of Iowa, University of Notre Dame	To provide a fundamental understanding of molten salt bulk and interfacial chemistry that will underpin molten salt reactor technology.	5	2018- 2022
Energy Dissipation to Defect Evolution (EDDE)	Oak Ridge National Laboratory	Oak Ridge National Laboratory, University of Michigan, University of Tennessee, University of Wyoming, Virginia Polytechnic Institute and State University	To understand how extreme chemical complexity can be exploited to control energy dissipation and defect evolution under equilibrium and non-equilibrium conditions and to guide the development of radiation-tolerant alloys with unique magnetic and thermal properties.	4	2014- 2020
Solar					
<u>Center for Hybrid</u> <u>Organic Inorganic</u> <u>Semiconductors for</u> <u>Energy (CHOISE)</u>	Lawrence Berkeley National Laboratory	Argonne National Laboratory, Columbia University, Lawrence Berkeley	To expand dramatically our understanding and control of coherence in solids	3	2018- 2022

		National	by building on		
		Laboratory.	recent discoveries		
		University of	in quantum		
		California, Santa	materials along with		
		Barbara	advances in		
		Barbara	evnerimental and		
			computational		
			tochniquos		
Distance in a Light	Drinester		Te employ light	7	2010
Bioinspired Light-	Princeton	Arizona State	To employ light	/	2018-
Escalated Chemistry	University	University,	narvesting and		2022
(BIOLEC)		Brooknaven	advances in solar		
		National	photochemistry to		
		Laboratory,	enable		
		Massachusetts	unprecedented		
		Institute of	photoinduced		
		Technology,	cross-coupling		
		Michigan State	reactions that		
		University, National	valorize abundant		
		Renewable Energy	molecules.		
		Laboratory, North			
		Carolina State			
		University,			
		Princeton University			
Photonics at	Stanford	, California Institute	To achieve photonic	3	2018-
Thermodynamic	University	of Technology.	operations at	-	2022
Limits (PTL)	,	Harvard University	thermodynamic		
<u></u>		Stanford University,	limits by controlling		
		University of	the flow of photons		
		California Berkelev	electrons and		
		University of Illinois	nhonons in		
		Urbana Champaign	atomically		
		Of Dalla-Champaigh	aconically-		
			materials, enabling		
			entirely new energy		
			conversion systems.		
Center for Light	Northwestern	Argonne National	To develop the	2	2009-
Energy Activated	University	Laboratory,	fundamental		2020
<u>Redox Processes</u>		Northwestern	scientific		
<u>(LEAP)</u>		University, Yale	understanding		
		University	needed to use		
			efficient light-driven		
			multi-electron		
			redox processes to		
			power energy-		
			demanding		
			chemistry		

Alliance for	University of	Georgia Institute of	To develop the	3	2009-
Molecular	North Carolina	Technology,	fundamental		2020
PhotoElectrode	at Chapel Hill	University of North	molecular basis for		
Design for Solar		Carolina at Chapel	solar-driven water		
Fuels (AMPED)		Hill, University of	oxidation and		
		Texas at San	carbon dioxide		
		Antonio	reduction catalysis.		
Catalysis/Bioscience					
Integrated	Harvard	Brookhaven	To establish design	6	2014-
Mesoscale	University	National	principles for highly		2022
Architectures for		Laboratory, Harvard	selective catalytic		
Sustainable		University,	transformations		
Catalysis (IMASC)		Lawrence Livermore	driven by		
		National	, nanoporous dilute		
		Laboratory, Stony	alloys.		
		Brook University,			
		Tufts University,			
		University College			
		London, University			
		of California, Los			
		Angeles; University			
		of Florida,			
		University of			
		Pennsylvania			
Center for	Pennsylvania	Cambridge	To develop a nano-	7	2009-
Lignocellulose	State	University,	to meso-scale		2022
Structure and	University	Massachusetts	understanding of		
Formation (CLSF)		Institute of	cellulosic cell walls,		
		Technology, North	the energy-rich		
		Carolina State	structural material		
		University, Oak	in plants, and the		
		Ridge National	physical		
		Laboratory,	mechanisms of wall		
		Pennsylvania State	assembly, forming		
		University,	the foundation for		
		University of Rhode	new technologies in		
		Island, University of	sustainable energy		
		Texas at El Paso,	and novel		
		University of	biomaterials.		
		Virginia			
Catalysis Center for	University of	Brookhaven	To advance the	7	2009-
Energy Innovation	Delaware	National	catalysis science of		2022
(CCEI)		Laboratory,	complex systems		
		California Institute	with a focus on		
		of Technology,	thermocatalytic		
		Carnegie Mellon	transformation of		

			0 220		
		University, Columbia University, Johns Hopkins University, Rutgers University, Stony Brook University, University of California, Santa Barbara, University of Connecticut, University of Delaware, University of Maryland, University of Massachusetts, University of Minnesota, University of Pennsylvania	lignocellulosic (non- food-based) biomass into chemicals and transportation fuels.		
Inorganometallic Catalyst Design	University of Minnesota	Argonne National Laboratory,	To discover new classes of energy-	7	2014- 2022
Center (ICDC)		Clemson University.	science relevant		-
		Massachusetts	catalytic materials.		
		Institute of	especially through		
		Technology,	the exploitation of		
		Northwestern	computational		
		University, NuMat	modeling to identify		
		Technologies,	underlying		
		Pacific Northwest	structure-function		
		National	relationships that		
		Laboratory, Stony	are critical to		
		Liniversity of	nredictive catalyst		
		California. Davis.	discovery.		
		University of			
		Minnesota			
Center for	Pacific	Massachusetts	To establish the	5	2009-
Molecular	Northwest	Institute of	fundamental		2022
Electrocatalysis	National	Technology, Pacific	principles needed		
	Laboratory	Laboratory Burduo	interconversion of		
		University	electrical energy		
		University of	and chemical bonds		
		Washington,	through precise		

		University of	control of electron		
		Wisconsin, Yale	and proton		
		University	transfers.		
Biological Electron	Washington	Arizona State	To understand the	6	2014-
Transfer and	State	University, Duke	means by which		2020
Catalysis Center	University	University, Montana	biology controls the		
<u>(BETCy)</u>		State University,	kinetics and		
		University of	thermodynamics of		
		Georgia, University	electron bifurcation		
		of Utah, University	at both organic and		
		of Washington,	inorganic centers		
		Utah State	through electron		
		University,	transfer relays,		
		Washington State	allosteric coupling,		
		University	and cooperative		
			conformational		
			dynamics.		
Separations			Γ		
<u>The Center for</u>	Massachusetts	Lawrence Livermore	To address	6	2018-
Enhanced	Institute of	National	emerging and		2022
<u>Nanofluidic</u>	Technology	Laboratory,	compelling gaps in		
<u>Transport (CENT)</u>		Massachusetts	our knowledge of		
		Institute of	fluid flow and		
		Technology,	molecular transport		
		Stanford University,	in single digit		
		University of	nanopores and		
		California, Irvine,	establish the		
		University of	scientific		
		Florida, University	foundation for		
		of Illinois Urbana-	developing		
		Champaign,	transformative		
		University of	molecular		
		Maryland, Yale	separation		
		University	technologies		
			impacting the		
			Water-Energy		
Advonced Meterial	A # 2 2 2 2 -	Argona National	INEXUS.	4	2010
Advanced Materials	Argonne	Argonne National	design water called	T	2018-
<u>IOF Energy-Water</u>	INATIONAL	Laboratory,	interfaces to another		2022
<u>Systems (AIVIEVVS)</u>	Laboratory	NorthWestern	future advances to		
		University,	nuture auvances In		
		Chicago	officient water		
		Chicago	troatmont		
	1		ueaunent.		

<u>Center for</u> <u>Understanding and</u> <u>Control of Acid Gas-</u> <u>Induced Evolution of</u> <u>Materials for Energy</u> <u>(UNCAGE-ME)</u>	Georgia Institute of Technology	Georgia Institute of Technology, Lehigh University, Oak Ridge National Laboratory, Pennsylvania State University, Sandia National Laboratories, University of Alabama, University of Wisconsin, Washington University in St. Louis	To develop and harness a deep knowledge base in the characterization, prediction, and control of acid-gas interactions with a broad class of materials to accelerate materials discovery in acid gas separations, conversion, and utilization.	7	2014- 2022
<u>Center for Materials</u> <u>for Water and</u> <u>Energy Systems (M-</u> <u>WET)</u>	University of Texas at Austin	Lawrence Berkeley National Laboratory, University of California, Santa Barbara, University of Texas at Austin	To discover and understand fundamental science to design new membrane materials, develop tools and knowledge to predict new materials' interactions with targeted solutes from recalcitrant water sources, provide fit for purpose water, and recover valuable solutes with less energy.	1	2018- 2022
<u>Center for Gas</u> <u>Separations (CGS)</u>	University of California, Berkeley	École Polytechnique Fédérale de Lausanne, Lawrence Berkeley National Laboratory, National Energy Technology Laboratory, National Institute of Standards and Technology, Texas A&M University,	To develop new materials and membranes that enable the energy- efficient separation of gas mixtures, as required in the clean use of fossil fuels and in reducing emissions from industry. Particular emphasis	6	2009- 2020

		University of	is placed on		
		California, Berkeley,	separations that		
		University of	reduce CO2		
		Minnesota	emissions from		
			power plants and		
			energy-intensive		
			gas separations in		
			industry and		
			agriculture		
Subsurface			dentaria		
Center for	Stanford	SLAC National	To seek	2	2018-
<u>Center IOI</u> Machanistic Control	University	Accelerator	fundamental	2	2010-
	University	Accelerator	machanistia		2022
<u>Or water-</u>		Laboratory,	mechanistic		
Hydrocarbon-Rock		Stanford University,	understanding to		
Interactions in		University of	achieve control over		
Unconventional and		Southern California,	the various non-		
Tight Oil Formations		University of	equilibrium		
<u>(CMC-UF)</u>		Wyoming	chemical and		
			physical processes		
			occurring in shale		
			that increases		
			hydrocarbon		
			production while		
			decreasing the		
			amount of		
			produced water.		
			contaminants, and		
			the number of wells		
			drilled.		
Multi-Scale Fluid-	University of	Idaho National	To synthesize	6	2018-
Solid Interactions in	Utah	Laboratory.	geomaterials with		2022
Architected and	0.0011	Pennsylvania State	reneatable		
Natural Materials		l Iniversity	hierarchical		
		University of	heterogeneity and		
(10032)		California Davis	develop an		
		Liniversity of Litab	understanding of		
		University of Otali,	transport and		
		University Of	interfected		
		wisconsin,			
		University of	properties of fluids		
		Wyoming	confined within		
			these materials.		
Synthesis/Mat-					
Chem by Design					
Center for Bio-	Northwestern	Columbia	To develop the next	5	2009-
Inspired Energy	University	University, Harvard	frontier in soft		2022
Science (CBES)		University, New	materials relevant		

			0 220		
		York University,	to energy		
		Northwestern	challenges by		
		University,	designing structures		
		University of	that emulate		
		Michigan, University	functions we see in		
		of Pittsburgh	biological systems.		
A Next Generation	Stony Brook	Brookhaven	To develop a new	4	2018-
Synthesis Center	University	National	paradigm for		2022
(GENESIS)		Laboratory,	synthesis that		
		Colorado State	accelerates the		
		University,	discovery of		
		Columbia	functional materials		
		University,	by integrating		
		Farmingdale State	advanced in situ		
		College, Lawrence	diagnostics and		
		Berkeley National	data science tools		
		Laboratory, Oak	to interrogate,		
		Ridge National	predict, and control		
		Laboratory, Stony	the pathways that		
		Brook University,	govern synthesis		
		University of	and lead to new		
		California, San	materials.		
		Diego			
The Center for the	University of	Oak Ridge National	To harness the	4	2018-
Science of Synthesis	Washington	Laboratory, Pacific	complex		2022
Across Scales		Northwest National	functionality of		
(CSSAS)		Laboratory,	hierarchical		
		University of	materials by		
		California, San	mastering the		
		Diego, University of	design of high-		
		Chicago, University	information-		
		of Washington	content		
			macromolecular		
			building blocks that		
			predictively self-		
			assemble into		
			responsive,		
			reconfigurable, self-		
			healing materials,		
			and direct the		
			formation and		
			Tormation and		
			organization of		
			organization of inorganic		

<u>Center for Complex</u> <u>Materials from First</u> <u>Principles (CCM)</u>	Temple University	Brookhaven National Laboratory, Drexel University, Duke University, Northeastern University, Rice University, Temple University, Tulane University, University, Oniversity, of Pennsylvania	To develop, test, apply, and experimentally validate improved methods of electronic structure calculation for both simple and complex materials (including quantum materials).	6	2014- 2020
<u>Spins and Heat in</u> <u>Nanoscale</u> <u>Electronic Systems</u> <u>(SHINES)</u>	University of California, Riverside	Johns Hopkins University, University of California, Los Angeles, University of California, Riverside, University of Texas at Austin	To control interactions involving spins and lattice to achieve high energy efficiency in nanoscale electronic devices.	3	2014- 2020
<u>Center for Next</u> <u>Generation of</u> <u>Materials Design</u> <u>(CNGMD)</u>	National Renewable Energy Laboratory	Brookhaven National Laboratory, Colorado School of Mines, Harvard University, Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oregon State University, SLAC National Accelerator Laboratory, University of Colorado	To dramatically transform the discovery of functional energy materials through multiple-property search, incorporation of metastable materials into predictive design, and the development of theory to guide materials synthesis	5	2014- 2020
Environmental Management					
<u>Center for</u> <u>Performance and</u> <u>Design of Nuclear</u> <u>Waste Forms and</u> <u>Containers</u> (WastePD)	Ohio State University	Commissariat à l'Energie, France, Louisiana State University, Ohio State University, Pacific Northwest	To understand the fundamental mechanisms of waste form performance and apply that	8	2016- 2020

		National	understanding to		
		Laboratory,	design new waste		
		Pennsvlvania State	forms with		
		University, OuesTek	improved		
		Innovations II C	nerformance		
		Rensselaer	performance.		
		Relytochnic			
		institute, University			
		or North Texas,			
		University of			
		Virginia			
Center for	University of	Alfred University,	To combine	6	2016-
Hierarchical Waste	South Carolina	Clemson University,	experiment and		2020
Form Materials		Commissariat à	modeling to		
<u>(CHWM)</u>		l'Energie, Pacific	develop the		
		Northwest National	chemistry and		
		Laboratory,	structure motifs		
		Savannah River	needed to create		
		National	hierarchical		
		Laboratory,	materials that		
		University of	effectively		
		Florida, University	immobilize nuclear		
		of South Carolina	waste in persistent		
			architectures.		
Interfacial Dynamics	Pacific	Georgia Institute of	To master	4	2016-
in Radioactive	Northwest	Technology, Oak	molecular to		2020
Environments and	National	Ridge National	mesoscale chemical		
Materials (IDREAM)	Laboratory	Laboratory, Pacific	and physical		
		Northwest National	phenomena at		
		Laboratory,	interfaces in		
		University of Notre	complex		
		Dame, University of	environments		
		Washington.	characterized by		
		Washington State	extremes in		
		University	alkalinity and low-		
			water activity, and		
			driven far from		
			equilibrium by		
			ionizing (g h)		
			radiation		
Center for Actinide	Elorida Stato	Elorida International		6	2016
Science &	University	Iniversity Florida	understanding of	0	2010-
	University	State University	how electronic		2020
Technology (CAST)		Lawrence Berkelov	structure and		
		National	bonding control the		
			properties of		
1		Laburatury, LUS	properties of		1

ASSOCIATES LLC

Alamos National	radioactive	
Laboratory,	materials. This	
National High	knowledge will aid	
Magnetic Field	in the development	
Laboratory, Purdue	of nuclear	
University,	technologies that	
University at	enhance energy	
Buffalo, University	security, address	
of Manitoba,	nuclear legacy	
University of	issues and	
Pennsylvania	environmental	
	concerns, and foster	
	the next generation	
	of nuclear	
	scientists.	

Sources and Additional Information:

- More information on EFRCs is available at https://science.osti.gov/bes/efrc/.
- The prior FY 2018 EFRC Funding Opportunity Announcement is available at <u>https://science.osti.gov/-/media/grants/pdf/foas/2018/SC_FOA_0001810.pdf.</u>
- Best practices to organize and manage EFRCs is available at https://science.osti.gov/-/media/bes/efrc/pdf/history/other/EFRC-Ref---Good-Practices-2017-12-v2.pdf?la=en&hash=18ECBFCDAC5012ACE261C52B1AEBB4F6042FF63D.
- The two Basic Research Needs reports on quantum information science are available at https://science.osti.gov/-
 mailto:media/bes/pdf/reports/2018/Quantum_systems.pdf?la=en&hash=291099097EBCCFAB99D86F
 https://science.osti.gov/-
 https://science.osti.gov/-
 mailto:media/bes/pdf/reports/2018/Quantum_systems.pdf?la=en&hash=291099097EBCCFAB99D86F
 mailto:media/bes/pdf/reports/2018/Quantum_systems.pdf?la=en&hash=291099097EBCCFAB99D86F
- A summary of the microelectronics Basic Research Needs report is available at <u>https://science.osti.gov/-</u> /media/bes/pdf/reports/2018/Microelectronics_Brochure.pdf?la=en&hash=5FEFD0131FA3DA1 CC8C3196452D1AFB5558DE720.
- The Basic Research Needs report on the energy-water nexus is available at <u>https://science.osti.gov/-</u> /media/bes/pdf/reports/2017/BRN_Energy_Water_rpt.pdf?la=en&hash=A6F8FF3E654429D20C E557EE7D3342BDC2BF75F8.
- The Basic Research Needs report focused on environmental management is available at https://science.osti.gov/-

 /media/bes/pdf/reports/2016/Basic_Research_Needs_for_Environmental_Management_rpt.pd

 f?la=en&hash=062E30502B0EAD43CEF118F9C21EAB1754F07F85.
- Directing Matter and Energy: Five Challenges for Science and the Imagination is available at https://science.osti.gov/-/media/bes/pdf/reports/files/Directing_Matter_and_Energy_rpt.pdf.
- Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science is available at <u>https://science.osti.gov/-</u>

ASSOCIATES LLC

/media/bes/besac/pdf/Reports/Challenges_at_the_Frontiers_of_Matter_and_Energy_rpt.pdf?l a=en&hash=93DADAB468987BB52900D3EA96F5021EE03ED66A.